- Учитель: Sophie BRASSELET
- Учитель: Thomas pierre ma CHAIGNE
- Учитель: Julien FADE
- Учитель: Amelie LITMAN
This course is a lecture about light and lasers, providing comprehensive description of the physics underlying the operation of lasers.
After introducing the main physical processes responsible for light emission, this lecture develops a comprehensive treatment for the fundamental concepts of lasers physics and the basic operation principles. Spatial, temporal and coherence properties of laser light are also explored. Detailed example and tutorials are included.
1. Light emission
Historical context, thermal and blackbody emission, electromagnetism and quantum description
2. Photon-atom interaction.
Spontaneous and stimulated transitions, Einstein coefficients, levels populations, rate equations.
3. Light amplification
Conditions for amplification, pumping and population inversion, 2-level, 3-level and 4-level systems, gain and saturation.
4. The laser oscillator
Conditions for laser starting, resonant oscillation, steady-state regime, output intensity.
5. Laser cavities and laser beams
Longitudinal modes, cavity stability, transverses modes and Gaussian beams.
6. Pulsed regimes
Spiking, Q-switch, Modelock
7. Coherence properties of laser light
After introducing the main physical processes responsible for light emission, this lecture develops a comprehensive treatment for the fundamental concepts of lasers physics and the basic operation principles. Spatial, temporal and coherence properties of laser light are also explored. Detailed example and tutorials are included.
1. Light emission
Historical context, thermal and blackbody emission, electromagnetism and quantum description
2. Photon-atom interaction.
Spontaneous and stimulated transitions, Einstein coefficients, levels populations, rate equations.
3. Light amplification
Conditions for amplification, pumping and population inversion, 2-level, 3-level and 4-level systems, gain and saturation.
4. The laser oscillator
Conditions for laser starting, resonant oscillation, steady-state regime, output intensity.
5. Laser cavities and laser beams
Longitudinal modes, cavity stability, transverses modes and Gaussian beams.
6. Pulsed regimes
Spiking, Q-switch, Modelock
7. Coherence properties of laser light
- Учитель: Nicolas SANNER
- Учитель: Andre NICOLET
- Учитель: Gabriel SORIANO
- Учитель: Frederic ZOLLA
- Учитель: Edyta DUMAS
- Учитель: Nadege GUILLEM
- Учитель: Amelie LITMAN
- Учитель: Jean yves NATOLI
- Учитель: Carlotta ROVESTI
- Учитель: Frank WAGNER
- Учитель: Pauline BENNET
- Учитель: Amelie LITMAN
- Учитель: Gabriel SORIANO
Acquired competences
Students will develop proficiency in various mathematical techniques essential for optics and photonics applications, such as:
- Analyzing intensity patterns resulting from interference phenomena.
- Conducting basic electromagnetic analyses.
- Computing states of polarization arising from polarizing elements.
- Understanding mathematical underpinnings of Maxwell's equations.
- Grasping the significance of Fourier analysis, particularly its impact on domain transformations.
- Solving fundamental problems related to geometric optics.
Students will develop proficiency in various mathematical techniques essential for optics and photonics applications, such as:
- Analyzing intensity patterns resulting from interference phenomena.
- Conducting basic electromagnetic analyses.
- Computing states of polarization arising from polarizing elements.
- Understanding mathematical underpinnings of Maxwell's equations.
- Grasping the significance of Fourier analysis, particularly its impact on domain transformations.
- Solving fundamental problems related to geometric optics.
- Учитель: Patrick FERRAND
- Учитель: Miguel angel ALONSO GONZALEZ
- Учитель: Philippe AMRAM
- Учитель: Kamal BELKEBIR
- Учитель: Pauline BENNET
- Учитель: Nicolas BONOD
- Учитель: Thomas pierre ma CHAIGNE
- Учитель: Elodie CHOQUET
- Учитель: Guillaume DEMESY
- Учитель: Voicu octavian DOLOCAN
- Учитель: Romain DUBESSY
- Учитель: Julien DUBOISSET
- Учитель: Thomas DURT
- Учитель: Alexandre ESCARGUEL
- Учитель: Ludovic ESCOUBAS
- Учитель: Julien FADE
- Учитель: Patrick FERRAND
- Учитель: Amelie FERRE
- Учитель: Laurent GALLAIS-DURING
- Учитель: Nadege GUILLEM
- Учитель: Marie HOUSSIN
- Учитель: Konstantinos ILIOPOULOS
- Учитель: Michael KUZMIN
- Учитель: Loic LE GOFF
- Учитель: Fabien LEMARCHAND
- Учитель: Frederic LEMARQUIS
- Учитель: Amelie LITMAN
- Учитель: Julien LUMEAU
- Учитель: Guillaume MAIRE
- Учитель: Emmanouil MAVRAKIS
- Учитель: Jean yves NATOLI
- Учитель: Andre NICOLET
- Учитель: Laurent NONY
- Учитель: Matthew PIERI
- Учитель: Gilles RENVERSEZ
- Учитель: Carlotta ROVESTI
- Учитель: Carmen RUIZ HERRERO
- Учитель: Nicolas SANNER
- Учитель: Julien SAVATIER
- Учитель: Gabriel SORIANO
- Учитель: Brian STOUT
- Учитель: Jean-marc THEMLIN
- Учитель: Cecile THIRION
- Учитель: Johann TOUDERT
- Учитель: Frank WAGNER
- Учитель: Frederic ZOLLA
- Учитель: Edyta DUMAS
- Учитель: Nadege GUILLEM
- Учитель: Amelie LITMAN
- Учитель: Jean yves NATOLI
- Учитель: Carlotta ROVESTI
- Учитель: Frank WAGNER